hidden
Hình bìa

Research on Thermal Error Modeling Method of Machine Tool Spindle Based on Optimized BP Neural Network

Addressing the limitations of the single-temperature measurement point monitoring for detecting the temperature changes in the CNC machine tool spindle, and the shortcomings of the thermal error model based on back propagation neural network (BP) in accuracy, convergence and robustness. This paper studies the thermal error identification model and method of spindle based on multiple temperature sensors. An Adaptive particle swarm algorithmback-propagation neural network (IAPSO-BP) model for thermal error identification of principal axes is proposed. To enhance modeling accuracy and comprehensively monitor the temperature information of the machine tool spindle, the input of this model is generated by processing the  data collected through five temperature sensors. The IAPSO algorithm is employed for the automatic identification of BP parameters, reduce manual intervention, and enhancing the
model's capacity for generalization
.

Loại tài liệu:
Technical Report
Tác giả:
Mengjie Zhou
Đề mục:
Vật lý
Nhà xuất bản:
IOP Publishing
Tác giả phụ:
Ling Yin
Ngày xuất bản:
2024
Số trang/ tờ:
8
Định dạng:
pdf
Định danh tư liệu:
doi:10.1088/1742-6596/2694/1/012069
Nguồn gốc:
Journal of Physics: Conference Series; VOL2694, issue 1, 2024, pages 1-8 (012069)
Liên kết:
ISSN 1742-6596
Lượt xem: 0
Loại file Tập tin đính kèm Dung lượng Chi tiết
2024VOL2694(01)JPC1-8 (012069) Research_on_Thermal_Error_Mode.pdf 633526 Kb XemTải