hidden
Hình bìa

An in silico pipeline approach uncovers a potentially intricate network involving spike SARS-CoV-2 RNA, RNA vaccines, host RNA-binding proteins (RBPs), and host miRNAs at the cellular level

Background

In the last 2 years, we have been fighting against SARS-CoV-2 viral infection, which continues to claim victims all over the world. The entire scientific community has been mobilized in an attempt to stop and eradicate the infection. A well-known feature of RNA viruses is their high mutational rate, particularly in specific gene regions. The SARS-CoV-2 S protein is also affected by these changes, allowing viruses to adapt and spread more easily. The vaccines developed using mRNA coding protein S undoubtedly contributed to the “fight” against the COVID-19 pandemic even though the presence of new variants in the spike protein could result in protein conformational changes, which could affect vaccine immunogenicity and thus vaccine effectiveness.

Results

The study presents the findings of an in silico analysis using various bioinformatics tools finding conserved sequences inside SARS-CoV-2 S protein (encoding mRNA) same as in the vaccine RNA sequences that could be targeted by specific host RNA-binding proteins (RBPs). According to the results an interesting scenario emerges involving host RBPs competition and subtraction. The presence of viral RNA in cytoplasm could be a new tool in the virus’s armory, allowing it to improve its chances of survival by altering cell gene expression and thus interfering with host cell processes. In silico analysis was used also to evaluate the presence of similar human miRNA sequences within RBPs motifs that can modulate human RNA expression. Increased cytoplasmic availability of exogenous RNA fragments derived from RNA physiological degradation could potentially mimic the effect of host human miRNAs within the cell, causing modulation of the host cell network.

Conclusions

Our in silico analysis could aid in shedding light on the potential effects of exogenous RNA (i.e. viruses and vaccines), thereby improving our understanding of the cellular interactions between virus and host biomolecules. Finally, using the computational approach, it is possible to obtain a safety assessment of RNA-based vaccines as well as indications for use in specific clinical conditions.

Loại tài liệu:
Article - Bài báo
Tác giả:
Chetta, Massimiliano
Đề mục:
Journal of Genetic Engineering and Biotechnology
Nhà xuất bản:
Elsevier
Ngày xuất bản:
December 2022
Số trang/ tờ:
11
Định dạng:
pdf
Định danh tư liệu:
DOI: https://doi.org/10.1186/s43141-022-00413-5 | ISSN 1687-157X
Nguồn gốc:
Journal of Genetic Engineering and Biotechnology, Volume 20, Issue 1, December 2022, 129
Lượt xem: 0
Loại file Tập tin đính kèm Dung lượng Chi tiết
2022V20JGEB129.pdf 2652804 Kb XemTải